A corpus-based bootstrapping algorithm for Semi-Automated semantic lexicon construction

نویسندگان

  • Ellen Riloff
  • Jessica Shepherd
چکیده

Many applications need a lexicon that represents semantic information but acquiring lexical information is time consuming. We present a corpus-based bootstrapping algorithm that assists users in creating domain-speciic semantic lexicons quickly. Our algorithm uses a representative text corpus for the domain and a small set of \seed words" that belong to a semantic class of interest. The algorithm hypothesizes new words that are also likely to belong to the semantic class because they occur in the same contexts as the seed words. The best hypotheses are added to the seed word list dynamically, and the process iterates in a bootstrapping fashion. When the bootstrapping process halts, a ranked list of hypothesized category words is presented to a user for review. We used this algorithm to generate a semantic lexicon for eleven semantic classes associated with the MUC-4 terrorism domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A corpus-based bootstrapping algorithm for Semi-Automated semantic lexicon construction† ELLEN RILOFF and JESS ICA SHEPHERD

Many applications need a lexicon that represents semantic information but acquiring lexical information is time consuming. We present a corpus-based bootstrapping algorithm that assists users in creating domain-specific semantic lexicons quickly. Our algorithm uses a representative text corpus for the domain and a small set of ‘seed words’ that belong to a semantic class of interest. The algori...

متن کامل

Corpus-based Semantic Lexicon Induction with Web-based Corroboration

Various techniques have been developed to automatically induce semantic dictionaries from text corpora and from the Web. Our research combines corpus-based semantic lexicon induction with statistics acquired from the Web to improve the accuracy of automatically acquired domain-specific dictionaries. We use a weakly supervised bootstrapping algorithm to induce a semantic lexicon from a text corp...

متن کامل

Bootstrapping Biomedical Ontologies for Scientific Text using NELL

We describe an open information extraction system for biomedical text based on NELL (the Never-Ending Language Learner) (Carlson et al., 2010), a system designed for extraction from Web text. NELL uses a coupled semi-supervised bootstrapping approach to learn new facts from text, given an initial ontology and a small number of “seeds” for each ontology category. In contrast to previous applicat...

متن کامل

Learning Dictionaries for Information Extraction by Multi-Level Bootstrapping

Information extraction systems usually require two dictionaries: a semantic lexicon and a dictionary of extraction patterns for the domain. We present a multilevel bootstrapping algorithm that generates both the semantic lexicon and extraction patterns simultaneously. As input, our technique requires only unannotated training texts and a handful of seed words for a category. We use a mutual boo...

متن کامل

Design and implementation of Persian spelling detection and correction system based on Semantic

Persian Language has a special feature (grapheme, homophone, and multi-shape clinging characters) in electronic devices. Furthermore, design and implementation of NLP tools for Persian are more challenging than other languages (e.g. English or German). Spelling tools are used widely for editing user texts like emails and text in editors.  Also developing Persian tools will provide Persian progr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Natural Language Engineering

دوره 5  شماره 

صفحات  -

تاریخ انتشار 1999